1,561 research outputs found

    On NCQFT and dimensionless insertions

    Full text link
    In these notes, we aim at a precise definition of the tree level action for the noncommutative scalar and gauge field theories on four-dimensional canonically deformed Euclidean space. As tools to achieve this goal we employ power counting and normalization conditions.Comment: 10 page

    A formula for charmonium suppression

    Full text link
    In this work a formula for charmonium suppression obtained by Matsui in 1989 is analytically generalized for the case of complex c-cbar potential described by a 3-dimensional and isotropic time-dependent harmonic oscillator (THO). It is suggested that under certain conditions the formula can be applied to describe J/\psi suppression in heavy-ion collisions at CERN-SPS, RHIC, and LHC with the advantage of analytical tractability.Comment: 4 pages, no figures, to appear in Phys. At. Nucl., vol. 7

    Compactified rotating branes in the matrix model, and excitation spectrum towards one loop

    Full text link
    We study compactified brane solutions of type R^4 x K in the IIB matrix model, and obtain explicitly the bosonic and fermionic fluctuation spectrum required to compute the one-loop effective action. We verify that the one-loop contributions are UV finite for R^4 x T^2, and supersymmetric for R^3 x S^1. The higher Kaluza-Klein modes are shown to have a gap in the presence of flux on T^2, and potential problems concerning stability are discussed.Comment: 14 pages, 1 figure; v2 typos correcte

    Thermodynamic properties of a simple, confining model

    Get PDF
    We study the equilibrium thermodynamics of a simple, confining, DSE-model of 2-flavour QCD at finite temperature and chemical potential. The model has two phases: one characterised by confinement and dynamical chiral symmetry breaking; and the other by their absence. The phase boundary is defined by the zero of the vacuum-pressure difference between the confined and deconfined phases. Chiral symmetry restoration and deconfinement are coincident with the transition being of first order, except for μ=0\mu=0, where it is second order. Nonperturbative modifications of the dressed-quark propagator persist into the deconfined domain and lead to a dispersion law modified by a dynamically-generated, momentum-dependent mass-scale. This entails that the Stefan-Boltzmann limit for the bulk thermodynamic quantities is attained only for large values of temperature and chemical potential.Comment: 11 pages, LaTeX, epsfig.sty, elsart.st

    Heavy flavor kinetics at the hadronization transition

    Full text link
    We investigate the in-medium modification of the charmonium breakup processes due to the Mott effect for light (pi, rho) and open-charm (D, D*) quark-antiquark bound states at the chiral/deconfinement phase transition. The Mott effect for the D-mesons effectively reduces the threshold for charmonium breakup cross sections, which is suggested as an explanation of the anomalous J/psi suppression phenomenon in the NA50 experiment. Further implications of finite-temperature mesonic correlations for the hadronization of heavy flavors in heavy-ion collisions are discussed.Comment: 4 pages, 2 figures, Contribution to SQM2001 Conference, submitted to J. Phys.

    A New Approach to Non-Commutative U(N) Gauge Fields

    Full text link
    Based on the recently introduced model of arXiv:0912.2634 for non-commutative U(1) gauge fields, a generalized version of that action for U(N) gauge fields is put forward. In this approach to non-commutative gauge field theories, UV/IR mixing effects are circumvented by introducing additional 'soft breaking' terms in the action which implement an IR damping mechanism. The techniques used are similar to those of the well-known Gribov-Zwanziger approach to QCD.Comment: 11 pages; v2 minor correction

    Pseudoscalar Meson Nonet at Zero and Finite Temperature

    Get PDF
    Theoretical understanding of experimental results from relativistic heavy-ion collisions requires a microscopic approach to the behavior of QCD n-point functions at finite temperatures, as given by the hierarchy of Dyson-Schwinger equations, properly generalized within the Matsubara formalism. The convergence of sums over Matsubara modes is studied. The technical complexity of finite-temperature calculations mandates modeling. We present a model where the QCD interaction in the infrared, nonperturbative domain, is modeled by a separable form. Results for the mass spectrum of light quark flavors (u, d, s) and for the pseudoscalar bound-state amplitudes at finite temperature are presented.Comment: 14 pages, 11 figures, accepted for publication in Physics of Particles and Nuclei Letters, based on invited lectures at "Dense Matter In Heavy Ion Collisions and Astrophysics", 21.08-01.09 2006, Dubna, Russi
    corecore